
1

Digital system (SoC) design for
Deep Neural Networks
(AI accelerator design)

Author : Hyun Kim

Affiliation : Seoul National University of Science and Technology
Electrical and Information Engineering

Position : Assistant Professor

Contact : hyunkim@seoultech.ac.kr / 010-9600-5427
idsl.seoultech.ac.kr

2

Necessity of AI Semiconductor

70%

9%

6% 8%

4% 3%

USA Europe Japan

Taiwan China Korea

System
Semiconductor

AI Semiconductor

Unit: 0.1billion$

• 모바일 자가 학습 가능 재귀 뉴럴 네트워크 프로세서 기술 개발, 2020.04~2024.12, 과학기술정보통신부 지원
• 2,000 TFLOPS급 서버 인공지능 딥러닝 프로세서 및 모듈 개발, 2020.04~2027.12, 과학기술정보통신부 지원
• 인공지능 반도체 융합 전문 인력 육성 사업, 2020.04~2025.12, 과학기술정보통신부 지원

Architecture-Level

3

Key Issue of Mobile AI Accelerators
◈ AI accelerators based on digital system design are expected as a solution to these challenges in AI
◈ Three main goals of AI accelerators: High accuracy + High speed (throughput) + Low power

◈Necessity of Architecture-level approach: Hardware acceleration of the optimized neural networks
with parallelization and optimization enables fast processing with low-power consumption

◈Most effective way to accelerate AI
◈ GPU: Various development frameworks for AI are supported, but GPU suffers from size & cost & power problems!

◈ FPGA/ASIC: Expertise in implementation is required, but this approach has advantages of small size, high cost-
efficiency, high power-efficiency, and is easy to apply techniques to increase hardware utilization

YOLOv2 GPU (GTX Titan X) FPGA (Virtex-7 VC707)

Power 170W 18.3W

Speed↑ Power↓Accuracy↑

◈ Results of processing the same network on FPGAs & GPUs

Architecture-Level

4

DrivePX2 and FPGA

◈ Various Platforms for Autonomous Driving
 Requires a low-power device because it must operate from a limited resource of vehicles
 Nvidia launches autonomous embedded board still high power consumption
 Recently, FPGA is attracting attention due to high efficiency in terms of the trade-off

between power and performance

Titan XP Drive PX2
(Tesla)

Jetson TX2
(Embedded)

AGX Xavier
(Embedded)

FPGA (Virtex
UltraScale+VCU

1525)

Manufacturer Nvidia Nvidia Nvidia Nvidia Xilinx

Performance 12.15 TFLOPs
8-10

TFLOPs
1.5 TFLOPs 11 TFLOPs

21 TOPs
(16 INT)

Power 250W 125W < 15W < 30W < 25W

Processor
1x CPU(Xeon) +
1x GPU(1080Ti)

2x CPU +
1x GPU

1x CPU (TegraX2)
+ 1x GPU (Pascal)

1x CPU (Xavier) +
1x GPU (Volta) +

1x TPU
FPGA

Price $1,500 (GPU only) $15,000 $599 $1,299 $5,995

Architecture-Level

5

FPGA Implementation Results - DEEPHi

Reference : Deephi

Architecture-Level

6

Recent Trend of FPGA & GPU

Altera

USD USD

Fig. NVIDIA (GPU) stock price trend in the early
stages of AI semiconductor commercialization

Fig. XILINX (FPGA) stock price trend in the early
stages of AI semiconductor commercialization

After GPUs began to emerge
as AI semiconductors, sales
to data centers increased
significantly

After FPGAs began to emerge as
AI semiconductors, sales to data
centers increased significantly

Architecture-Level

7

Overview of AI Accelerators

Autonomous Driving

Video Surveillance
as a Service (VSaaS)

Apply to target
applications

Pruning

Quantization

SW-based low complexity schemes
for low-power & speed-up

Accuracy
Enhancement

Convolution layer

Upsample layer

Route layer

Detection layer

+ … … … …

0
1 4

18 36 61
79

80

81

82

… *

85 86
84

…
91

92

93

94

…
*

9796 98

…
103

104

105

106

+
*

Addition

Concatenation

Input image

… Further layers

Performance enhancement schemes

Deep Neural Networks

Forward (for Inference & Training)

Backward (for Training)

Test set

Training set

Main memory
DDR4DRAM DDR4DRAM

Non-volatile memory

DDR4SCMDDR4SSD DDR4SCMDDR4SSD

Processor

HW Acc.

Architecture Platform

Mobile

Main memory
DDR4HBM DDR4HBM

Non-volatile memory

DDR4SCMDDR4SSD DDR4SCMDDR4SSD

Many-core Processor

HW
Ac
c.

HW
Ac
c.

…
HW
Ac
c.

HW
Ac
c.

Cloud Server

Architecture Platform

Weight
Update

Memory System for DNNs

Focus on designing the application-
specific AI accelerators for mobile devices

Pipelining

Parallelism

HW-based low complexity schemes
for low-power & speed-up

Architecture-Level

8

Front-End Verification

Hardware
Specification Using

C or Matlab

Behavioral/RTL
Modeling (HDL)

Functional
Simulation

Synthesis

Gate-level
Simulation

Verify timing/HW
resource

constraints

Bit-stream
Generation

FPGA test

ASIC Design

Architecture-Level

9

Challenges Designing CNN HW Accelerator

◈ Motivation
 CNNs require numerous computations and external memory accesses
 Why should we minimize off-chip memory access?

• Energy consumed by off-chip access is much larger than on-chip access/arithmetic ops
• SOTA accelerators such as Dianao [1], Cambricon-X [2]: DRAM energy accounts for > 80%

of total

 Why should we reduce buffer size?
• In ASIC design, the large buffer size leads to the large chip size increase hardware cost

◈ General Solution
 Quantize networks with low precision to minimize computations and on-

chip SRAM size
 Data-path optimization to minimize the off-chip access
 Reuse the modules and apply pipelining for increasing HW utilization

DRAM access Others

> 80%

> 90%

Cambricon-X

Dianao

Energy breakdown

[1] “Diannao: A small-footprint high-throughput accelerator for ubiquitous machine-learning,” ASPLOS 2014.
[2] “Cambricon-x: An accelerator for sparse neural networks,” MICRO 2016.

Architecture-Level

10

Architecture-Level

◈ Goal: Implement high throughput and low-power (low-cost) HW accelerators
◈ Motivation: CNNs require significant external/internal memory accesses and capacity as well as

large amounts of computation
 Energy and latency caused by off-chip accesses are much more critical than on-chip access/arithmetic operation
 Large buffer size leads to an increase in hardware cost, and internal memory allowed in FPGAs is also limited

◈ Solution/Contribution
 HW-Centric Quantization: Binary W + Flexible low-bit A(3b to 6b) to store the entire parameter in on-chip BRAMs
 Streaming HW architecture with data-path optimization: By using row-based weight reuse, intermediate data

are reused without off-chip access Completely remove off-chip access for intermediate feature-maps
 Enhancing hardware utilization: Pipelined computation & Pipelined batch processing

conv1 ... conv17

CONV Batch
Norm

Max
poolingControl

&
Status

DRAM

YOLO accelerator

YOLO
DMAPC

IE

Host
PC

Write Input Image & Read Output

VC707 FPGA board

Input Image Detection

Input buffer

◈ Related Papers
 “A High-Throughput and Power-Efficient FPGA Implementation of YOLO CNN for Object Detection,” IEEE Trans. VLSI Syst., Aug. 2019 (Google Scholar Citation: 101)

FPGA Design for YOLO Object Detectors (1)

W: weight, A: activation

RTL design

<Pipelined structure between each layer> <Row-based weight reuse>

No access for Inter-
mediate feature-maps

11

◈ Data reuse
 Basically, block-based computations are used to achieve the trade-off between HW resource and

performance
 Previous Design (1): No weight reuse

 Previous Design (2): Frame-based weight reuse

[1] “SmartShuttle: Optimizing off-chip memory accesses f
or deep learning accelerators,” DATE 2018.
[2] “DNA: Deep Convolutional Neural Network Architectur
e with Reconfigurable Computation Patterns,” TVLSI 2018.

◈ Weight reuse scheme in [1], [2]
◈ It maximizes the weight reuse
◈ Drawbacks:
 Inputs/outputs are accessed

multiple times
 To reduce off-chip access

Large buffer size to store
inputs/outputs

...
Ti

K

Input feature-maps Weight Blocks Output feature-maps buffer

Sliding cube

H

N

K
K

Ti

Block 1

Block To

H

To

M

H

H

Output sequenceMoving direction

…

…

(1)

(2)

(3)

(1)
(2)

(3)
(n+1)

(n) (n)

New Weight Blocks

◈ The input sliding cube moves
from the beginning toward the
end of the channel dimension
Each sliding cube is convolved
with new weight blocks (No reuse)

◈ This has the best locality of the
partial sum It does not require
a temporary buffer for the
accumulation

...TiK

Input feature-maps Weight Blocks

Sliding cube

H

N

K
K

Ti

Block 1

Block To
H

To-channel output

H To

M

Architecture-LevelFPGA Design for YOLO Object Detectors (2)

12

◈ Data reuse
 Proposed Design: Row-based weight reuse

[1] “SmartShuttle: Optimizing off-chip memory accesses for deep learning accelerators,” DATE 2018.
[2] “DNA: Deep Convolutional Neural Network Architecture with Reconfigurable Computation Patterns,” TVLSI 2018.

 How sliding cube moves:
 (1) slide through a row pass (weight

blocks are reused for a row pass)
 (2) shift next Ti input channels
 (3) next row pass (new weight blocks

reuse)
 (4) last row pass
 Repeat (1)-(4) for next sub-row

output (O2) until last sub-row output
 (5) move down one row & go to (1)

 Outputs sequence is same as that of
inputs

...

Ti

K

Input feature-maps
Weight Blocks To-bank out buffer

Sliding cube

H

N

K
K

Ti

Block 1

Block To

H

To

…

Moving direction
Output sequence

… (1) (O1)

New Weight Blocks

(2)

(3)(n)
(O2)

…

(n+1)

Features No weight reuse
Frame-based
weight reuse

Row-based
weight reuse

Input buffer size (K+1)×N×H×QA H2×N×QA (K+1)×N×H×QA

Output buffer size 0 To×H2×QS To×H×QS

Weight read
(times)

H2 1 H

Weight reuse
(times)

1 H2 H

Efficient for - Deep layers Shallow layers

QA: input bit-width, QS: Psum bit-width

Advantages
Inputs are loaded once from off-chip
memory in a row-by-row manner

- Input load time is hided by
overlapping with computation
- Reused for a row size
Small buffer for inputs/outputs

Disadvantages
Weights are read H times
Requires large weight buffer

Efficient for layers with large
feature maps and small weights

Architecture-LevelFPGA Design for YOLO Object Detectors (3)

13

Architecture-Level

◈ Goal: Achieve optimal hardware design by reflecting the characteristics of the layers
and compensating for the loss of accuracy

◈ Motivation: Previous design uses a common hardware organization scheme for all the layers
(=not layer-specific), and causes a significant accuracy degradation due to binary W quantization
 1st: Characteristics of each layer are different, and the size of required buffers also varies according to the
weight reuse method
 2nd: Most weights have small absolute values, whereas a few weights have large absolute values

◈ Related Papers
 "Layer-specific Optimization for Mixed Data Flow with Mixed Precision in FPGA Design for CNN-based Object Detectors," IEEE Trans. CSVT, Jun. 2021

FPGA Design for YOLO Object Detectors (4)

0.00E+00

1.00E+06

2.00E+06

3.00E+06

4.00E+06

5.00E+06

6.00E+06
Number of params Number of feature-maps

Large feature maps
size

Small feature maps
size

Pipeline HW Units
using Row-reuse

Main engine using
Frame- reuse

Group boundary

Features
Frame-based
weight reuse

Row-based
weight reuse

Input buffer size H2×N×QA (K+1)×N×H×QA
Output buffer size To×H2×QS To×H×QS
Weight buffer size Ti×To×K2 M×N×K2

Data read (times) 1 1
Efficient for Deep layers Front layers

Frame-
based

Row-
based

Performance degradation
from here!

<Weight distribution of YOLO>

<Characteristics of each layer>

14

Architecture-Level

◈ Goal: Achieve optimal hardware design by reflecting the characteristics of the layers
and compensating for the loss of accuracy

◈ Motivation: Previous design uses a common hardware organization scheme for all the layers
(=not layer-specific), and causes a significant accuracy degradation due to binary W quantization

◈ Solution/Contribution
 Mixed data flow: Row-based and frame-based W reuse schemes are applied to front and deep layers, respectively

• Front layers (Group 1): Processed in a pipelined HW structure using row-based W reuse
• Deep layers (Group 2): Sequentially operated in a single processing module using frame-based W reuse
• Optimization: Determine the group boundary to maximize HW utilization |tg1–tg2| should be minimized

 Mixed (Outlier-aware) precision quantization: Dense 1-bit for small weights + Sparse 8-bit for large weights

FPGA Design for YOLO Object Detectors (5)

DRAMInput
Image

Output

Frame
buffer Frame

buffer

Params

Pipelined layers

Params

Main Layer

conv
1 ...

Delayed shortcut row buffer

Element-
wise

addition

Block2 Block N...Block1

Shortcut frame buffer

 Binary

Mixed

◈ Related Papers
 "Layer-specific Optimization for Mixed Data Flow with Mixed Precision in FPGA Design for CNN-based Object Detectors," IEEE Trans. CSVT, Jun. 2021

Group 1

Group 2

<Mixed-Precision Quantization>

<Group Boundary Optimization>

<Mixed-data flow HW structure> Outlier!

15

Sim-YOLO v2
on GPU [1] Tincy YOLO [2] Lightweight

YOLO v2 [3]
Proposed

(Sim-YOLO v2)
Proposed

(Layer Opt.)

Platform GTX Titan X
(16nm)

Zynq Ultrascale+
(16 nm)

Zynq Ultrascale+
(16 nm)

Virtex-7 VC707
(28 nm)

Virtex-7 VC707
(28 nm)

Frequency 1 GHz N/A 300 MHz 200 MHz 200 MHz
BRAMs (18 Kb) N/A N/A 1706 1144 1245

DSPs N/A N/A 377 272 829
LUTs - FFs N/A N/A 135K – 370K 155K – 115K 245K – 117K

CNN Size (GOP) 22.73 4.5 14.97 17.18 17.18
Precision (W, A)(**) (32, 32) (1, 3) (1-32, 1-32) (1, 3-6) (Mixed 1-8, 3-6)

Image Size 416×416 416×416 224×224 416×416 416×416
Frame rate 88 16 40.81 109.3 109.3

Accuracy (mAP) (%) 72.08 48.5 67.6 64.16 71.13
Throughput (GOPS) 1512 72 610.9 1877 1877

Efficiency (GOPS/kLUT) N/A N/A 4.52 12.11 7.66
Power (W) 170 6 N/A 18.29 N/A

Power efficiency
(GOP/s/W) 8.89 12 N/A 102.62 N/A

[1] J. Redmon, A. Farhadi, “YOLO9000: Better, Faster, Stronger,” [Online]. Available: arxiv.org/abs/1512.03385. arxiv.org/abs/1612.08242.
[2] T. B. PreuBer et al. “Inference of Quantized Neural Networks on Heterogeneous All-Programmable Devices,” in Proc. IEEE DATE Conf., 2018.
[3] H. Nakahara et al. “A lightweight YOLO v2: A Binaized CNN with Parallel Support Vector Regression for an FPGA,” in Proc. ACM Symp. FPGA, 2018.

◈The proposed design (Sim-YOLOv2) is 1.2x faster & 11.5x more power efficient than GPU
◈Compared to lightweight YOLO-v2, 3.1x faster (w/ higher resolution) at 1.5x slower frequency
◈ Layer Opt. shows significant improvement in mAP despite similar HW resources with Sim-YOLOv2

Architecture-LevelFPGA Design for YOLO Object Detectors (6)

16

Architecture-Level

◈ Live Demo (FPGA Evaluation) of YOLO Accelerator for streaming inputs

FPGA Design for YOLO Object Detectors (7)

17

Architecture-Level

◈ FPGA Evaluation of YOLO Accelerator for ADAS (Blackbox HD inputs)

FPGA Design for YOLO Object Detectors (8)

18

<On-device training of DNN model (smart mobility)>< Example of on-server training of DNN model>

Offline supervised learning
(@Servers/Workstations)

Global model

Large-scale learning data

◈Motivation: Increasing demand for ‘Mobile Self-learning’ for optimal AI models in user's individual environments

 It is difficult to cope with different environments for each user only with the global model created by the cloud

 Re-training of AI models for each user in the cloud requires large-scale computing/memory resources in the
cloud and may raise personal privacy issues and labeling burdens

 Mobile self-learning shares the burden of computation and labeling of the cloud server and enables the
achievement of optimized performance for individual users without privacy issues

◈ Challenging point
 HW: Difficulty in implementing RTL of backpropagation + Difficulty in applying lightweight techniques
 SW: Difficulty in selecting unlabeled data to be used for self-learning + Difficulty in training only additional

data based on pre-trained weights

Self-learnable AI Accelerator for Mobile Devices (1)

Burden of computation and labeling↓

Optimized performance
for individual users

Architecture-Level

19

Self-learnable AI Accelerator for Mobile Devices (2)

Offline supervised learning
Online mobile self learning

Acc. of
Infer-
ence

Model

Acc. of
Training
Model

Training
Data

SelectorMemory

Parameters
for DNN

Training data selection

Supervised ClassifierFeature extraction layer

Data from mobile
environment

Reflect the results of the training model as the inference model

<Self-learnable mobile AI platform based on weakly-supervised learning and training data management scheme>

Algorithm & Architecture Level Research

◈ Solution: Implementation of self-learnable AI accelerator platforms using inference results from mobile devices

 ①DNN Inference of online inputs on ‘Inference Accelerator’ using pre-trained weights ②Based on the inference
results, ‘Training Data Selector’ distinguishes the training data to be used for self-learning later and stores these data
in ‘Memory’ ③Selected data in the memory are trained as weak-labeled data in ‘Training Accelerator’ and newly
trained weights suitable for the current environment are updated to ‘Inference Accelerator’ intermittently

◈ Contribution
 HW: ①RTL design of DNN backpropagation (Approximated structure for gradient calculation, Up-sampling/scaling and

weight update structure), ②Light-weight schemes for training HW structure (8/16bits Mixed precision, Kernel pruning)

 SW: ① Uncertainty-based training data selection scheme for maximizing performance, ② Uncertainty-aware
training acceleration scheme for minimizing iterations required for self-learning

Using
Uncertainty

①

②

③

Architecture-Level

20

Integrated Platform for Self-learnable HW IP

 System-on-Chip design incorporating self-learnable HW IP

AI accelerator platform

AI accelerator platform

AI
Processor

AI
Processor

Light-weight model
Self-

Learning

Update the
results to DNN

models

Cloud learning
integrated system

Decryption of distributed
learning results

Encryption of integrated
learning results

Integration of distributed
learning results

Light-weight model
Self-

Learning

Federated Learning

Architecture-Level

21

Integrated SoC platform for autonomous driving

◈Motivation
 Computing power required for level 4 autonomous driving (AD) is predicted to be at the level of hundreds of

TOPS, and large-capacity/high-speed storage technology is also required for data storage and processing
 Currently, most of the platform implementations for AD are developing into a centralized architecture with a single

HPC platform, but they suffer from excessively high computational requirements and memory capacity/BW

◈ Solution: Optimal SoC platform for AD integrating a number of scalable inference accelerators (from
previous research), self-learning accelerator (from short-term plan), and memory dedicated to DNN
(from short-term plan & previous research)

◈ Contribution
 Parallel processing by distributing multiple inputs to multiple inference accelerators (using PRAM-based LP MEM)
 Support DNN inference optimized for the current status using a self-learning accelerator (using Approx. DRAM)
 Secure AI accelerator platforms that satisfy all essential elements of AD (accuracy, real-time, and low power)

Integration of Various Research

Architecture-Level

	Digital system (SoC) design for Deep Neural Networks�(AI accelerator design)
	Necessity of AI Semiconductor
	Key Issue of Mobile AI Accelerators
	DrivePX2 and FPGA
	FPGA Implementation Results - DEEPHi
	Recent Trend of FPGA & GPU
	Overview of AI Accelerators
	 Front-End Verification
	Challenges Designing CNN HW Accelerator
	FPGA Design for YOLO Object Detectors (1)
	슬라이드 번호 11
	FPGA Design for YOLO Object Detectors (3)
	FPGA Design for YOLO Object Detectors (4)
	FPGA Design for YOLO Object Detectors (5)
	FPGA Design for YOLO Object Detectors (6)
	FPGA Design for YOLO Object Detectors (7)
	FPGA Design for YOLO Object Detectors (8)
	Self-learnable AI Accelerator for Mobile Devices (1)
	Self-learnable AI Accelerator for Mobile Devices (2)
	Integrated Platform for Self-learnable HW IP
	Integrated SoC platform for autonomous driving

