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Necessity of Al Semiconductor Architecture-Level

| System/Al semiconductor market size | Korean govemment's high interestin Al | System/Al Semiconductor market share
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Necessity and importance of research and manpower training for Al semiconductors

Prospect: In next 5-10 years, the system semiconductor market including Al semiconductors is expected to grow
up to 3 x of the memory semiconductor market, and the government has also high interest in Al semiconductors
Current Status: Significantly lower market share of system semiconductors compared to memory semiconductors (about

70% vs. 3%) due to the small/medium company-oriented development structure

Solution: Securing stand-alone technologies through industry-academia cooperation research + Producing experts who

have a comprehensive understanding of Al algorithms and system semiconductor design technology
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Key Issue of Mobile Al Accelerators Architecture-Level

# Al accelerators based on digital system design are expected as a solution to these challenges in Al
@ Three main goals of Al accelerators: High accuracy + High speed (throughput) + Low power

’ 4 T
' Hardware
[ N

| Acceleration |

Al Semiconductor

Technology —
/ /" Dedicated
| AlgonthnN g . Memoh

0 timizat ! . J
p mi. ICII'1 DESIgn 4
L N r

Acuray Speed t Power |

@ Necessity of Architecture-level approach: Hardware acceleration of the optimized neural networks
with parallelization and optimization enables fast processing with low-power consumption

@ Most effective way to accelerate Al
@ GPU: Various development frameworks for Al are supported, but GPU suffers from size & cost & power problems!

@ FPGA/ASIC: Expertise in implementation is required, but this approach has advantages of small size, high cost-
efficiency, high power-efficiency, and is easy to apply techniques to increase hardware utilization

# Results of processing the same network on FPGAs & GPUs
YOLOv2 GPU (GTX Titan X) FPGA (Virtex-7 VC707)

s Power 170W 18.3W
ASICs

:

SEQOULTECH
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DrivePX2 and FPGA Architecture-Level

# Various Platforms for Autonomous Driving

= Requires a low-power device because it must operate from a limited resource of vehicles
= Nvidia launches autonomous embedded board > still high power consumption

= Recently, FPGA is attracting attention due to high efficiency in terms of the trade-off
between power and performance

FPGA (Virtex

. Drive PX2 Jetson TX2 AGX Xavier
Titan XP (Tesla) (Embedded) (Embedded) UItraS12c5aZI§)+ vcu
Manufacturer Nvidia Nvidia Nvidia Nvidia Xilinx
8-10 21 TOPs
Performance 12.15 TFLOPs TELOPS 1.5 TFLOPs 11 TFLOPs (16 INT)
Power 250W 125W < 15W < 30W < 25W
1x CPU (Xavier) +
1x CPU(Xeon) + 2x CPU +  1x CPU (TegraX2)
Processor 1x GPU(1080Ti) 1xGPU  + 1x GPU (Pascal) X GPU (Volta) + FPGA
1x TPU
Price $1,500 (GPU only) $15,000 $599 $1,299 $5,995

INTELLIGENT DIGITAL . =
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FPGA Implementation Results - DEEPHI

Benchmark comparison of networks

[ ]

Platform AVMPSoC ZU2EG

Size: 50*70 mm

DPU AB1152

Peak perf.: 576 GOPS (500MHz)

L]

ResNet-50 7.7 15.3 5.3 18.38 5.55 23 5.9 24.87 6.32 27 6.6
ResNet-50 3.8 236 5.29 28.24 5.54 33.5 5.89 37.8 6.2 39.6 6.52
GooglLeNet 3.2 36.5 5.26 45.90 5.54 53.8 5.97 61.7 6.43 68.2 6.74
GooglLeNet 1.6 62 5.24 77.11 5.59 93 6.03 109.4 6.41 116 6.72
SSD 17 1.63 5.4 2.03 5.71 2.44 6.22 2.835 6.52 3.23 7.05
SSD 1.6 13.2 547 16.35 5.77 19.34 6.18 22.43 6.65 25.3 7.05

Reference : Deephi
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Recent Trend of FPGA & GPU Architecture-Level

Fig. NVIDIA (GPU) stock price trend in the early Fig. XILINX (FPGA) stock price trend in the early
stages of Al semiconductor commercialization stages of Al semiconductor commercialization
usD usD
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LU centers increased significantly - [ =
]
150
10 n
5 45
l:l i i i 1 .-
e 168 e T 4TS T8 B0 A5 e 1 »

81 MBS MBS ITA TS TS 181 MAF 'AE 1

Programmable Logic Devices' Vendors by Revenue

in Calendar 2015 Yo Revenue Growth Rate of Xilink and Peers from

Calendar Q1 2017 to Q1 2018*

intel' i

XILINX. =

<A NVIDIA.

2
.?

40%
= Xilinx Intel = Others @ W o o e @ o @
JO1F 20T 2000 AN JOEB 20e AE Alie Aot
Altera

—JLNX NVDA INTC'S Alisr Barnéss

INTELLIGENT DIGITAL MARKET REALEST
SYSTEMS DESIGN LAB 6

SEQOULTECH



Overview of Al Accelerators

Architecture Platform Memory System for DNNs

- Mostly Inference

- Embedded GPU - FPGA/ASIC
- Low-Predsion: 2b/4b/8b (INT)

- Sparse network

- Application-spedfic accelerator design

HW-based low complexity schemes

for low-power & speed-up

Waork cycle
| | 1
¢ | Conud | Conv2 | Convd | FC4 | =»+ [ } :
3 Gomi| Convz | Coma | FCa } ]
a
N Gonvl | Convz | Conva | FCa | er 1
)
8 Comt | Gonvz | Conia | FOA | -
Datai Data'i+1 Datai+2 Datd i+3
Pipelining
Model Paraielism - ﬂ InP mll'i am y
Power |
Macina ]
_____ .
Speed 1 Parallelism

Performance enhancement schemes

COCOmAP

Accuracy
’ ." . Enhancement

FLOPS IBl iong)
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Focus on dem the application-

specific Al accelerators for mobile devices /7

H Forward (for Inference & Training)

Test set %@
r

.
D N | Network e 2
eep Neural Networks H !I-T_ N

-

[Fﬁ

(8

Mas-posking

A

LD
SaroE3s
SesissdEaz

Backward (for Training)
Training set

— |
Architecture Platform I

Main memory
[HBm || HBM |

Cloud Server

Non-volatile memory

- Training is dominant

- Still, GPU is dominant

- Predision: 8b/16b/32b (FP)

- Dense network

- General-purpose accelerator design

Architecture-Level

SW-based low complexity schemes
for low-power & speed-up
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Front-End Verification Architecture-Level

Verify timing/HW

I\I:elgla\ll.loral{_lRJII__ resource

odeling ( ) constraints
Functional Bit-stream
Simulation Generation

Hardware A 3
Specification Using .
C or Matlab Synthesis FPGA test

Gate-level .
Simulation ASIC Design
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Challenges Designing CNN HW Accelerator Architecture-Level

4 Motivation

= CNNs require numerous computations and external memory accesses

= Why should we minimize off-chip memory access?

« Energy consumed by off-chip access is much larger than on-chip access/arithmetic ops

« SOTA accelerators such as Dianao [1], Cambricon-X [2]: DRAM energy accounts for > 80%
of total

= Why should we reduce buffer size?
« In ASIC design, the large buffer size leads to the large chip size = increase hardware cost

Relative Energy Cost

DRAM access Others Operation Energy [pJ]1 Relative Cost
. 32 bit int ADD 0.1 1
Cambricon-X > 80% 32 bit float ADD 0.9 9
32 bit Register File 1 10
32 bit int MULT 3.1 31
Dianao > 90% 32 bit float MULT 3.7 37
32 bit SRAM Cache 5 50

1 10 100 1000 10000

4 General Solution

= Quantize networks with low precision to minimize computations and on-
chip SRAM size

= Data-path optimization to minimize the off-chip access
= Reuse the modules and apply pipelining for increasing HW utilization

[1] "Diannao: A small-footprint high-throughput accelerator for ubiquitous machine-learning,” ASPLOS 2014.

INTELLIGENT DiGiTAL [2] “Cambricon-x: An accelerator for sparse neural networks,” M/CRO 2016. -.E
| D S |_ SYSTEMS DESIGN LAB 9
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FPGA Design for YOLO Object Detectors (1) e iEa

@ Goal: Implement high throughput and low-power (low-cost) HW accelerators

@ Motivation: CNNs require significant external/internal memory accesses and capacity as well as
large amounts of computation
» Energy and latency caused by off-chip accesses are much more critical than on-chip access/arithmetic operation
= Large buffer size leads to an increase in hardware cost, and internal memory allowed in FPGAs is also limited

@ Sqution/Contribution W: weight, A: activation

= HW-Centric Quantization: Binary W + Flexible low-bit A(3b to 6b) to store the entire parameter in on-chip BRAMs

= Streaming HW architecture with data-path optimization: By using row-based weight reuse, intermediate data
are reused without off-chip access > Completely remove off-chip access for intermediate feature-maps

= Enhancing hardware utilization: Pipelined computation & Pipelined batch processing
VC707 FPGA board

—= 1= Row-based reuse controller To Processing Elements (PE
Batch Max P Clreurbuller o ing | LUKEIElS poeyned Adder Tree
CONV [~ N 1 boolin v cube |
Control orm poo™me I e HARE b
s =l YOLO < & . N input ' kernel [P Line buffer
o DMA Input buffer N | = i $
Host Status - \\ Lo L e 1 | 1lw iﬂu § o
e Block Prefetd - 5
PC [H]—> convl | ... m-» convl? *[H] \\ B P shift o quantize -+ B[P
5 A = a o
RTL design YOLO accelerator S EatoRilorm -
A
Write Input Image|& Read Output Input Image© Detection Output sequence
.......................................... —— Moving direction R (]
Gl INo access forInter - W, Ll n s Block 1| RJ-=--__ /«‘
el ediate featUure-maps < /\2‘ T, — f‘“‘:“ 1
1 g™ A s
HW unit for layer i _ HW unit for layer i+1 K '|' 1% : i i H@-.: PP To 1 p
- o e ' P |
2 Row buffers _‘E Row buffers L_‘_(E‘tf) -_Td_‘"' b PPl ! i
Em/‘-] "‘I/"/ . A Row-based e 2‘" ‘.I/“I/‘./ 5 Row-based conv |- H 4.1..—' Sl g cube -7 : : 7
i 1] >¥ reuse e T i 1 ¥ reuse o T i ! Block To ' -
1 1] i kernels Z 1 (A ) kemels | »
H (7 | controller 2|l controlle N Wot Blocks LZmmmmm _.«
= e /C1e! QCKS oo - -
2L Rows for comp. 7| Input feature-maps New Weight Blocks To-bank out buffer
<Pipelined structure between each layer> <Row-based weight reuse>
& Related Papers P y

= “A High-Throughput and Power-Efficient FPGA Implementation of YOLO CNN for Object Detection,” IEEE Trans. VLSI Syst., Aug. 2019 (Google Scholar Citation: 101)-.
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FPGA Design for YOLO Object Detectors (2) AACiiEeEa

@ Data reuse
= Basically, block-based computations are used to achieve the trade-off between HW resource and

performance
= Previous Design (1): No weight reuse

TI . . -
— @ The input sliding cube moves
H/:7 Block 1 from the beginning toward the
B K end of the channel dimension >
K | - M Each sliding cube is convolved
v e @ = S with new weight blocks (No reuse)
Tt > H =" P m— : )
H sliding cube To @ This has the best locality of the
Block To " To-channel output partial sum - It does not require
N a temporary buffer for the
i accumulation
Input feature-maps Weight Blocks
= Previous Design (2): Frame-based weight reuse @ Weight reuse scheme in [1], [2]
Moving direction I Output sequence @ It maximizes the weight reuse
H .../,.’_'_ A0 Block1| K H 5 /) « Drawbacks:
Gal @ -~ F Tt o = Inputs/outputs are accessed
IR i 0 7 1 . : ¥ (3 multiple times
LW (K ® gl P .
H ! T v 'H = To reduce off-chip access >
! L---'('n) Sliding cube : n Large buffer size to store
I e Block To Y / inputs/outputs
N R — [1] “SmartShuttle: Optimizing off-chip memory accesses f
. To or deep learning accelerators,” DATE 2018.
Input feature-maps _Welqht Blocks Output feature-maps buffer /27 “DNA: Deep Convolutional Neural Network Architectur
New We|g ht Blocks e with Reconfigurable Computation Patterns,” TVLSI 2018

SEQOULTECH

INTELLIGENT DIGI1AL
SYSTEMS DESIGN LAB 11



FPGA Design for YOLO Object Detectors (3) AACiiEeiEa

@ Data reuse
= Proposed Design: Row-based weight reuse

v'Advantages
vInputs are loaded once from off-chip

Output sequence ‘
memory In a row—by—row manner

Moving direction

H '(n')' /_ :5): Block 1 - Input. Ioaq time s .hided by
Ry, 2 T — : overlapping with computation
S A Ti ! - Reused for a row size
PK {-+4 Q. ! : v'Small buffer for inputs/outputs
R ! 1 1 i . L TO 1 1 .

YD) I Pt 2 ! ' v'Disadvantages
H R A sliding cube -7 ! : v'"Weights are read H times
Ti Block To i v /Reguires large weight bufffer
N L 1 vEfficient for layers with large
Weiaht Blocks f d Il iah
C To-bank out buffer eature maps and small weignts
Input feature-maps New Weight Blocks
v How sliding cube moves:
(1) slide through a row pass (weight Features No weight reuse Fra.me-based R(?w-based
blocks are reused for a row pass) weight reuse  weight reuse
(2) shift next Ti input channels Input buffer size  (K+1)xNxHxQ, HZxNxQ,  (K+T)XNxHxQ,
i)us”e‘;’(t row pass (new weight blocks Output buffer size 0 T, xH2xQq T xHXQq
Weight read 5
(4) last row pass e H 1 H
Repeat (1)-(4) for next sub-row Weight reuse
output (02) until last sub-row output e 1 H2 H
(5) move down one row & go to (1) Efficient for - Deep layers  Shallow layers
v Outputs sequence is same as that of ] L. .
inputs QA: input bit-width, QS: Psum bit-width
[1] “SmartShuttle: Optimizing off-chip memory accesses for deep learning accelerators,” DATE 2018.
| D S L INTELLIGENT DIGITAL /2] “DNA: Deep Convolutional Neural Network Architecture with Reconfigurable Computation Patterns,” TVLS/ 2018. E
SYSTEMS DESIGN LAB
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FPGA Design for YOLO Object Detectors (4)

Architecture-Level

@ Goal: Achieve optimal hardware design by reflecting the characteristics of the layers

R4

and compensating for the loss of accuracy

Motivation: Previous design uses a common hardware organization scheme for all the layers
(=not layer-specific), and causes a significant accuracy degradation due to binary W quantization
= 1st: Characteristics of each layer are different, and the size of required buffers also varies according to the

weight reuse method

= 2nd: Most weights have small absolute values, whereas a few weights have large absolute values

6.00E+06 quence
* ® Number of params ® Number of feature-maps Moving direction L. Output sequence
H . ,'—I— ad /1 Block 1 K :
5.00E+06 Pipeline HW Units Main engine using T f}
using Row-reuse Frame- reuse 72 I ® Frame-
4.00E+06 H : o
" ﬁ 1 ﬂ ! -- ( Shiding cube based
' n
__________________ Group, boundary :‘ B / Block To
3.00E406 -7 s s s LSS N —
/ arge feature maps™, | .-~ A i
[ ‘n e Small featurg mapsf Input feature-maps New Weight Blocks  Output feature-maps buffer
. ize AR size J ! P P utputriuqmuu
2.00E+06 S SN 2 Moving direction 10
S S A B — N . 2
Vo T H//{J__ P Block 1 e ey :
1.00E+06 : 2 . r-::?: Ti E:i:: ([}t ; R _
| K __|__ ! :: ® : £ F T ) ow
' s £2 O (RN I ¢ 1 based
| 1 (r L. - 1 1 ]
0.00E+00 - i 11 : lallall b H Pl Sliding cube |- ! ! )
T ! v
S e\\\,o @\'»o e\\%o@\b‘o §\%o §{oo @\«O §(bo ﬁ@&@&o&oéc)e“\yé@@\’b@(’\ ! Block To i [
P ELCEEE OSSO N , U e
:Q’ c oo Weight Blocks To-bank out buffer
<Character|st|cs of each |ayer> Input feature-maps New Weight Blocks
300, Features Frame-based Row-based
=200 Performance degradation weight reuse weight reuse
E loo! from here! Input buffer size H2xNxQ, (K+1)xNxHxQ,
Output buffer size ToxH?xQq ToxHXQg
o6 -0 _ U b» 04 0.06  0.08 Weight buffer size TixT,xK? MxNxK?2

Data read (times) 1 1
Efficient for Deep layers Front layers

Valuc of “u;_,ht

< . . . . S
+ Related Papers Weight distribution of YOLO
= "Layer-specific Optimization for Mixed Data Flow with Mixed Precision in FPGA Design for CNN-based Object Detectors," IEEE Trans. CSVT, Jun. 2021
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FPGA Design for YOLO Object Detectors (5) AACiiEeiEa

@ Goal: Achieve optimal hardware design by reflecting the characteristics of the layers
and compensating for the loss of accuracy

@ Motivation: Previous design uses a common hardware organization scheme for all the layers
(=not layer-specific), and causes a significant accuracy degradation due to binary W quantization
@ Solution/Contribution
» Mixed data flow: Row-based and frame-based W reuse schemes are applied to front and deep layers, respectively
« Front layers (Group 1): Processed in a pipelined HW structure using row-based W reuse
« Deep layers (Group 2): Sequentially operated in a single processing module using frame-based W reuse
«  Optimization: Determine the group boundary to maximize HW utilization = [tg1-tg2| should be minimized
» Mixed (Outlier-aware) precision quantization: Dense 1-bit for small weights + Sparse 8-bit for large weights

i T > Running time (tg1)
T Element- H ! >
. co1nv L N wise ) . Group 1 [_Image 0 ! Image 1| ! Image 2|

1

1 0

1 1

1 | ees

| Sy B =
1 ! Il 1

i addition i %_, > Group 2 ! Image 0 ! Image 1 !

- '

i } i H Running time (tg2)

1 1

] 1

1 ~J

<Group Boundary Optimization>
4000 . . . . . . !

T 5 2000 | Binary
Frame~ /Ay . S
N _--buffer I Main Layer prrpe ol _ _ ﬂ _ ﬂ _ _ _ |
Group 1 ,——"/ o vmessewen | buffer 0.06 -0.04 -0.02 0 0.02  0.04 0.06 0.08
“ T = Value of weight
dapaither [
—{ Blockl [ Block2 |- |Block N - E‘ m ''''' - i 2008 ¢ _ : . : . .
T e rere=]—] .
Pipelined layers o q E :
Z 1000 Mixed
4 Shortcut frame buffe 4  Group 2 “
:Input:-:-:Params-:-:-:-:-:-:-:-:-:-:-:- -------- ANRA o cParams. o A L | . . . .
7 alue o) .
i Outlier!
< - > . . . . .
+ Related Papers Mixed-data flow HW structure <Mixed-Precision Quantization>
= "Layer-specific Optimization for Mixed Data Flow with Mixed Precision in FPGA Design for CNN-based Object Detectors," IEEE Trans. CSVT, Jun. 2021
INTELLIGENT DIGITAL Im
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FPGA Design for YOLO Object Detectors (6) AACiiEEiER

Sim-YOLO v2 _. Lightweight Proposed Proposed
on GPU (1]  TINCY YOLO 121 3/ "5%31  (simYoLO v2) (Layepr Opt.)
Platform GTX Titan X Zynq Ultrascale+ Zynq Ultrascale+ Virtex-7 VC707 Virtex-7 VC707
(16nm) (16 nm) (16 nm) (28 nm) (28 nm)
Frequency 1 GHz N/A 300 MHz 200 MHz 200 MHz
BRAMs (18 Kb) N/A N/A 1706 1144 1245
DSPs N/A N/A 377 272 829
LUTs - FFs N/A N/A 135K — 370K 155K — 115K 245K - 117K
CNN Size (GOP) 22.73 4.5 14.97 17.18 17.18
Precision (W, A)(**) (32, 32) (1, 3) (1-32, 1-32) (1, 3-6) (Mixed 1-8, 3-6)
Image Size 416x416 416x416 224x224 416x416 416x416
Frame rate 88 16 40.81 109.3 109.3
Accuracy (mAP) (%) 72.08 48.5 67.6 64.16 71.13
Throughput (GOPS) 1512 72 610.9 1877 1877
Efficiency (GOPS/kLUT) N/A N/A 4.52 12.11 7.66
Power (W) 170 6 N/A 18.29 N/A
Power efficienc
(GOB/s/W) y 8.89 12 N/A 102.62 N/A

@ The proposed design (Sim-YOLOV2) is 1.2x faster & 11.5x more power efficient than GPU

@ Compared to lightweight YOLO-v2, 3.1x faster (w/ higher resolution) at 1.5x slower frequency

# Layer Opt. shows significant improvement in mAP despite similar HW resources with Sim-YOLOv2
[1] J. Redmon, A. Farhadi, “"YOLO9000: Better, Faster, Stronger,” [Online]. Available: arxiv.org/abs/1512.03385. arxiv.org/abs/1612.08242.

[2] T. B. PreuBer et al. “Inference of Quantized Neural Networks on Heterogeneous All-Programmable Devices,” in Proc. IEEE DATE Conf., 2018.
[3] H. Nakahara et al. “A lightweight YOLO v2: A Binaized CNN with Parallel Support Vector Regression for an FPGA,” in Proc. ACM Symp. FPGA, 2018. -.

K
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FPGA Design for YOLO Object Detectors (7) e tER ez
4 Live Demo (FPGA Evaluation) of YOLO Accelerator for streaming inputs

0
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FPGA Design for YOLO Object Detectors (8) ACiiEeiEa ez
@ FPGA Evaluation of YOLO Accelerator for ADAS (Blackbox HD inputs)

0
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Self-learnable Al Accelerator for Mobile Devices (1) AEIEEERRT

@ Motivation: Increasing demand for ‘Mobile Self-learning’ for optimal Al models in user's individual environments
= |t is difficult to cope with different environments for each user only with the global model created by the cloud

» Re-training of Al models for each user in the cloud requires large-scale computing/memory resources in the
cloud and may raise personal privacy issues and labeling burdens

- Mobile self-learning shares the burden of computation and labeling of the cloud server and enables the
achievement of optimized performance for individual users without privacy issues

4 Challenging point
= HW: Difficulty in implementing RTL of backpropagation + Difficulty in applying lightweight techniques
= SW: Difficulty in selecting unlabeled data to be used for self-learning + Difficulty in training only additional
data based on pre-trained weights Burden of computatlon and labeling |

P e e e e

Offline supervised learning
(@Servers/Workstations)

o

»

g 9K

;B

fxe
Local Model 1

Optimized performance
for individual users

T T T T T T T TTIN  mmwmmmm O T T T v \\
:
o ‘ o : ﬁ o :
— ! 33 . |
i I ssee E sy |
fetected tied '\ Local Model 5 /'
< Example of on-server training of DNN model> ~ ~ ~ ~ <On-device training of DNN model (smart mobility)>" 'l:
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Self-learnable Al Accelerator for Mobile Devices (2) AVEIEEMERETE

# Solution: Implementation of self-learnable Al accelerator platforms using inference results from mobile devices

* @DNN Inference of online inputs on ‘Inference Accelerator’ using pre-trained weights > @Based on the inference
results, ‘“Training Data Selector’ distinguishes the training data to be used for self-learning later and stores these data
in ‘Memory’ > (3Selected data in the memory are trained as weak-labeled data in ‘Training Accelerator’ and newly
trained weights suitable for the current environment are updated to ‘Inference Accelerator’ intermittently

4 Contribution

= HW: @RTL design of DNN backpropagation (Approximated structure for gradient calculation, Up-sampling/scaling and
weight update structure), @Light-weight schemes for training HW structure (8/16bits Mixed precision, Kernel pruning)

= SW: @ Uncertainty-based training data selection scheme for maximizing performance, @ Uncertainty-aware
training acceleration scheme for minimizing iterations required for self-learning

® Reflect the results of the training model as the inference model

celed data

~

retrained the W

model with the
pseudo and
Iabeled datasets

/

e e o e o o o o e o = e o -

J' ol =11--"-"fF-~-—-"1----=--- Training data selection
AN . . { Data f bil : i
:E:‘_'-.:‘;.Z:' Parameters Training | environment - ’
\ W : ::: 9 ) for DNN Data Feature extraction layer Supervised Classifier
Selector (A ) . 0
. : N e Usin RGeS W L N
Offline supervised learning ) ) ) 9 i MLt
Online mobile self learning Uncertainty \ L S p)

<Self-learnable mobile Al platform based on weakly-supervised learning and training data management scheme> ‘l:
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Integrated Platform for Self-learnable HW IP Architecture-Level

= System-on-Chip design incorporating self-learnable HW IP
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Integrated SoC platform for autonomous driving ARCIEEUERETE

Neural Processing Unit (NPU) — INF_0
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4 Motivation
* Computing power required for level 4 autonomous driving (AD) is predicted to be at the level of hundreds of
TOPS, and large-capacity/high-speed storage technology is also required for data storage and processing

= Currently, most of the platform implementations for AD are developing into a centralized architecture with a single
HPC platform, but they suffer from excessively high computational requirements and memory capacity/BW

# Solution: Optimal SoC platform for AD integrating a number of scalable inference accelerators (from
previous research), self-learning accelerator (from short-term plan), and memory dedicated to DNN
(from short-term plan & previous research)

4 Contribution
= Parallel processing by distributing multiple inputs to multiple inference accelerators (using PRAM-based LP MEM)
= Support DNN inference optimized for the current status using a self-learning accelerator (using Approx. DRAM)

- Secure Al accelerator platforms that satisfy all essential elements of AD (accuracy, real-time, and low power)
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